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Lattice fluid dynamics from perfect discretizations of continuum flows
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We use renormalization group methods to derive equations of motion for large scale variables in fluid
dynamics. The large scale variables are averages of the underlying continuum variables over cubic volumes
and naturally exist on a lattice. The resulting lattice dynamics represents a perfect discretization of continuum
physics, i.e., grid artifacts are completely eliminated. Perfect equations of motion are derived for static, slow
flows of incompressible, viscous fluids. For Hagen-Poiseuille flow in a channel with a square cross section the
equations reduce to a perfect discretization of the Poisson equation for the velocity field with Dirichlet
boundary conditions. The perfect large scale Poisson equation is used in a numerical simulation and is shown
to represent the continuum flow exactly. For nonsquare cross sections one can use a numerical iterative
procedure to derive flow equations that are approximately peff8t063-651X98)04511-3

PACS numbeps): 47.10+g

I. INTRODUCTION dimensional pure S(3) gauge theory8], and full QCD[9].
Here we use similar methods in classical physics. In prin-

Problems of fluid flow are of great practical importance in ciple, the renormalization group can be used to derive perfect
such areas as mechanical engineering and meteorology. discretizations for any differential equation. Examples of
full theoretical understanding of fluid flow is very difficult great practical importance are the Laplace and Poisson equa-
because of the complex dynamics. In particular, in the retions, Maxwell’s equations, and the Navier-Stokes equation.
gime of fully developed turbulence we face a dynamical sysA perfect discretization of the Laplace equation was obtained
tem with fluctuations on all length scales. The small scalehy Bell and Wilson in an early study of scalar lattice field
structures influence the dynamics at larger scales in a Wagheory[10]. The perfect action for a classical gauge field, and
that is hard to control analytically. Numerical simulations arenence a perfect discretization of Maxwell's equations, has
therefore an essential tool in fluid dynamics. However, withpeen constructed in Reff8,9]. In this work we concentrate
present day computers a full simulation of realistic problemsy, the Navier-Stokes equations. Here we do not treat the
from first principles is beyond reach. Already simple modeIELomem in its full complexity yet. Specifically, we restrict

prob[ems exh.aus.t the biggest maChin?S available. Hence, rselves to incompressible fluids and we assume static,
practical applications one makes additional assumptions, e31ow flows

pec]ally about_ the smaII_ scale dynamics, that are difficult to The first step in our program is to define large scale lattice
justify theoretically and involve free parameters. In fact, thevariables from the underlvina continuum fields. In the case
primary systematic error in numerical simulations of fluid ying '

flow is due to the finite grid size that is necessary to dis-Of the Navier-Stokes equations these are the velocity and
cretize the continuum Navier-Stokes equations. pressure fields. We average the continuum pressure over a

The main purpose of this paper is to point out that perfecf:“be of side lengtla to define the large scal_e pressure .vari-
discretizations, i.e., ones that are completely free of grid ar@Ples, which then naturally exist on a lattice of spacing
tifacts, exist and can be constructed explicitly. The existenc€onsisting of the cube centers. Similarly, the velocity field is
of perfect discretizations is a direct consequence of Wilson’@veraged over the interface between two neighboring cubes
renormalization group theoryl]. The idea of the renormal- and hence the corresponding lattice field exists on the links
ization group is to deal with the fluctuations at different connecting neighboring lattice points. This construction en-
length scales step by step in scale. In this way the influencgures that the continuity equation maintains a simple form on
of small scale fluctuations on the large scale dynamics can, &fbe lattice. By construction we know exactly how the large
least in principle, be controlled exactly. The renormalizationscale variables are related to the continuum fields. The goal
group approach has been useful in the study turbulence araf the next step is to derive equations of motion for the large
has been applied to various problems previoysbe[2—4]  scale fields. Solving these equations yields exact results for
for some examplgs the averaged continuum quantities. This is in contrast to

Recently, however, in the context of lattice quantum fieldstandard discretization procedures, where the lattice field
theories so-called perfect actions have been constructed foepresents an approximation of the continuum field at the
various models using the renormalization group. Originally,same point. The approximation becomes exact only in the
Hasenfratz and Niedermayer iterated a renormalization grougontinuum limita—0 because the value of the field at a
transformation to obtain a perfect discretization for the two-specific point is influenced by the dynamics at arbitrarily
dimensional @) nonlinearc model and demonstrated that small scales. A perfect discretization, on the other hand, en-
grid artifacts were eliminated even on coarse lattj&dsThe  sures exact results for averaged continuum quantities already
same method has been applied to lattice ferm[6rig, four- at finite a. Still, the values of the continuum fields can be
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reconstructed from the lattice data by using so-called perfect sinm(x/a—n)
fields. f0= 2, f(na)
The second step is to derive exact equations of motion for nes

the lattice fields. One possibility to do that is to iterate apore we have assumed thix) is infinitely differentiable

discrete_ renormalizatipn group transformation. This is _doneand that its Fourier transform exists. The above equation
by starting on a very fine lattiogn fact, at the end the lattice yields

spacing of the fine lattice is sent to zgemd then performing

an infinite sequence of blocking steps, in which the lattice d2f(ma) 1[ 72
fields are averaged over blocks, and effective equations of =——]=f(0)+2 E f(na)
motion for the block variables are derived. Here we proceed dx? a? 3 nezvm} (n—m)
differently by blocking directly from the continuum. The re- 1.4

sult is identical to the discrete, iterative procedure, but thel_h. f s th i d derivati f
derivation is more transparent. Wilson discovered this tech IS exactly represents the continuum second derivative o
nique [11], which has not been very well known until re- 'éhe.fun_ctlon at thg lattice poimna. Ib-!owglvelr, nowd'Fhe lattice d
cently. For example, blocking from the continuum was also her!vatlve pt? mprises terms at ar |(tjrar|)|/ arge :.sl(tanc:‘rehsf an
used in the derivation of the QCD perfect act{®}. In con- their contributions are suppressed only powerlike. This Is

trast to quantum field theory there is no action for the fuII}['thr?St ;’;Ien::ﬂraen((j)igltg(;’l?:le(s:og;rlllggf llon t:és IZ?:?ee dtgi(;:(t)r?trrlb% re
Navier-Stokes problem. Still, blocking from the continuum tr?is o Sation%s not of oractical usee n ?:ontrast the aed\?an-
can be directly applied to the equations of motion. The con; d P ) '

straint that identifies the large scale lattice variables with théagg of_usmg block averaged fields is that their perfect dis-
cretizations are local.

averaged continuum fields is implemented through & As opposed to previous applications of perfect discretiza-
Lagrange multiplier. Solving the equations for the continuum PP P bp P

variables in terms of the lattice fields and plugging the resulf'ons’ which dealt with infinite volumes or finite systems

back into the constraint equations leads to the equations fé’yith periodic boundary c_qnditi(_)ns, the ir)co_rpora_tion of more
the large scale variables general boundary conditions is essential in fluid dynamics.

While it is straightforward to implement periodic boundary

For numerical applications it is essential that the lattice " o e : .
equations of motion are as local as possible. In this paper w onditions, it is more difficult to treat fixed boundary condi-

distinguish three types of locality: ultralocal, local, and non—gct)iﬂs’it\f[vuf}'gg oou(fuct%ratlr:‘i;gg“t:)%lufrllglgr dzgﬁgxﬁ)snszzlr']cggogs'_
local. A lattice equation is called ultralocal if it couples the ’ y P

lattice field at a given site to a finite number of neighboringrngr?;fgufggig It?) z:m?an%eefrs(\:/t/r:gg:acirggsuig?:g(s).n Tse;er\év(i_
sites only. Consider, for example, the one-dimensional

; angular polygon. Arbitrarily curved boundaries can in prin-
Laplace equation X ; . .
P q ciple be handled using curvelinear coordinates, but we do not

w(x/la—n) 13

(_ 1)n—m
2 |*

d2f(x) elaborate on this issue here.
-—=0. (1.1 The paper is organized as follows. In Sec. Il we introduce
dx the large scale lattice pressure and velocity variables by

blocking from the continuum and we investigate their behav-
ior under discrete renormalization group transformations.
Section IIl contains the derivation of perfect equations of
i[f(x+a)_2f(x)+f(x_a)]zo (1.0  motion for Hagen-Poiseuille flow. The parameter in the
a’ renormalization group transformation is optimized for ul-
tralocality in two dimensions. We verify explicitly that also
is ultralocal because it couples the field at the paitd its  jn three dimensions continuum physics is exactly repro-
nearest neighbors at+-a andx—a only. In general, a per- duced. In Sec. IV we show analytically that the equations of
fect discretization will not lead to an ultralocal Coupling. The motion indeed Satisfy a factor 2 renormalization group Step_
couplings to fields at distant sites are nonzero, but exponersection V presents results of a numerical calculation of the
tially suppressed. In that case we say that the lattice equatigattice fields. In Sec. VI we construct the perfect velocity
is local. By optimizing the parameters of the renormalizationfield that allows reconstruction of the continuum field from
group transformation one can control the strength of the exthe lattice data. Section VII deals with static, slow flows in
ponential decay. It turns out that the parameters can be ch@eneral. We derive the perfect lattice version of the corre-
sen such that the perfect equations become ultralocal in onghonding Navier-Stokes equations. In Sec. VIII we present a
dimension. In practice, even in higher dimensions this leadgerturbative method of introducing the nonlinear term to
to extremely local perfect lattice equations, whose exponenequation of motion. Finally, Sec. IX contains concluding re-
tially suppressed couplings to distant neighbors can safely bgiarks on how to extend our construction to the full Navier-
neglected. In particular, as it will become clear later, evenstokes equations and to arbitrarily shaped boundaries. We

the ultralocal equatior{1.2) turns out to be perfect. This also speculate about applications of perfect discretizations to
would not be the case for the common approach to discretinymerical simulations of turbulent flows.

zation problems, where one interprets lattice derivatives as
approximations of continuum derivatives at the same point.
Still, even then one can find a perfect discretization. It is a
well known result in engineering that a smooth functf@r) The continuum Navier-Stokes equations are formulated in
can be reconstructed from its valugsa) on a lattice by terms of pressure and velocity variables. Here we consider

Its standard lattice discretization

Il. LARGE SCALE LATTICE VARIABLES
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static flows ind dimensions and hence pressygy) and
velocity v;(y) with ie{1,2,... d} are functions of the po- P() p .
sition vectory only. For incompressible fluids the velocity . o & Jhlxtad .
field obeys the continuity equation V(x)
P’(x’) P(x’+a’i)
3,0,(y)=O0. 2.1 ° ‘ Ve 9
To define the large scale lattice pressure varialflgghe ° Qe o
continuum pressure fieldp(y) is averaged over ad- Vix-aj)
dimensional cube, of side lengtha centered ak,

1 FIG. 1. Geometry of the block factor 2 renormalization group
pngJ’c ddy p(y). (2.2)  transformation.

are then integrated over cube§, of side lengtha’ that

The variablesP, naturally exist on a lattice of spacirg  contain 2 original cubesc,. Hence the resulting pressure
formed by the cube centexs Similarly, for the velocity field  variable

we define
’ 1 d
PXII—,J, d% p(y)
1 d—1 a Cy
Vi,X: d_lf d in(y)v (23)
a fi X
’ 1 1 g
_ _ _ _ == —df d%y p(y)

where f; , is the (d—1)-dimensional face separating the 2xex @ Jey
cubesc, _,ip andcy, 4ip. Note thatl is the unit vector in the 1
i direction. It is natural to associate the velocity variables :_dE P, (2.5

with the links connecting neighboring lattice sites ai/2 2xex!

and x+ai/2. Now thei component ofx is a half-integer o the coarse lattice is a block average of the pressure vari-
multiple of the lattice spacing. The lattice velocity variables gpjes on the fine lattice. We use= X’ to denote that the

can be interpreted as volume flow rates per cross sectiong|,,, ’ .
. ) . ; ' ec, belongs to the block,, . The corresponding geom-
area of the faces separating neighboring cubes. This defm?— X g X P g9

tion of the lattice velocity field is natural because the IatticeeJ[ry s illustrated in Fig. 1. Similarly, for the velocity field
I i “we have
continuity equation then assumes an ultralocal form. It is

simply given by

! 1 —

Vi,x’:a,dlff/ d¢ 1in(y)
ix’

SVXZZ [Vi,x+aAi/2_Vx7aAi/2]

: 1 1 1

= > —L dtyvi(y)= > Vix-

1 j 20- L5 adt 20 L
= dtyuvi(y)
ad_lZ { fi x+air2 yoiy (26)

d—1 Herexex’ denotes that the sum includes fadeg on the

- d® ywi(y) fi - ' ,
i xair2 ine lattice that belong to the fadé’X, on the coarse lattice.
Of course, by construction the coarse lattice velocity vari-

qd-1 ables also obey the continuity equation. This block factor 2
T od-1 s, oivi(y) renormalization group transformatiofiRGT) will be used
later to demonstrate that the structure of the perfect equations
of motion reproduces itself under renormalization.

1
:adljc d% g,vi(y)=0. (2.4
X IIl. PERFECT EQUATIONS OF MOTION FOR HAGEN-

) . POISEUILLE FLOW
Here we have used Gauss'’s law together with the continuum

continuity equation. The definition of lattice variables by  For simplicity we first discuss the derivation of perfect
blocking from the continuum can be viewed as a renormalequations of motion in the context of Hagen-Poiseuille flow.
ization group transformation with an infinite blocking factor. The general equations for static, slow flows are derived in
In fact, the same result could be obtained by iterating blockSec. VI. We start from the Navier-Stokes equation

factor 2 transformations starting from an arbitrarily fine lat- 1
tice. To identify the corresponding factor 2 transformation

we now blockf¥rom the conﬁinuumgto a lattice of twice the ViV TLi(y)dJvi(y)== ;aip(y)+ vajoviy).
lattice spacinga’=2a. The continuum pressure variables (3.2
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Here v is the kinematic viscosity of the fluid angl is its  we derive equations of motion from the variational principle
density. We restrict ourselves to incompressible flows, i.e., t@f the action. Varying the action with respectutg(y) yields

a constant density, and thus the continuity equation applies.
The appropriate boundary condition for a viscous fluid at a
fixed wall isv;(y)=0 for all i. Furthermore, we consider
static Hagen-Poiseuille flow, i.e., a constant pressure gradi-
ent 8p, in a channel with square cross sectidr=L971 where 64 «(y)=1 for ye fq, and zero otherwise. Varying
along thed direction. Hence the pressure is given jbfy) the action with respect tgy , one obtains

= Jdpyy. The velocity is along the channel, i.e., only(y) is

nonzero and in addition independentygf. Then the equa-

op
didivg(y)— E_F; N4.x04.x(¥Y)=0, (3.6

_ d-1 _ a2 _
tions reduce to thed— 1)-dimensional Poisson equation Vi x a1, d* Cyvg(y)—aanyx=0. (3.7
X
3,d04(y) = @ (3.2) It appears that the constraint of E§.4) is correctly imple-
17id vp' mented only fora=0. However, varying the action with

. . . respect tovy , gives
with Dirichlet boundary conditions 4(y) =0 at the edge of ’

the square. This equation follows from a variational principle 74x=0. (3.8

of an action _
To solve the above equations we now go to momentum

a1 |1 op space. Since the velocity vanishes at the boundary the appro-
Sval= JAd y Eaivd(Y)ﬁiUd(YHV_pvd(Y) : priate Fourier transform takes the form

(3.3 d-1

— d-—1 i
Note that herei runs from 1 tod—1 only. The action is Ud(k)‘fAd yUd(Y)iﬂl sin(kiyi). (3.9

useful in our derivation of the perfect equations of motion.

Yet we want to stress that the existence of an action is naere the

really necessary. This is crucial because there is no action

principle for the full Navier-Stokes problem. In fact, writing T

the above action was possible only because we have re- Ki=Tmi (3.10

moved the time dependent dissipative element of the full

problem and have forced the flow to be static. are discrete momenta witlm; e N. Note thatv 4(k) extends
What is the perfect discretization of the Poisson equation®aturally to negative momentum values because

To answer that question we consider the large scale lattice

variable Ud(kl, PR ,_ki, PP ,kd_1)=—vd(k1, PP ,ki, PP lkd—l)'
(3.11
Vg, = 1 f d9 Ly v4(y) (3.4 Similarly, for the lattice velocity field we have
X7 _d-1 ' ’
a fax d-1
Note that the facefy, is nothing more than a Vd(k)=a“*1§ Vd,xi];[l sin(k;y;). (3.12

(d—1)-dimensional cube andy, behaves practically as a

(d—1)-dimensional scalar. We want to impose Ej4) asa  Now the sum is finite and extends over=1,2, . .. N only,
constraint for each facg, ,. For this purpose we add it t0 \yhereN=L/a. The Lagrange multiplier fieldyy  is trans-

the action using a Lagrange multiplier fielg , that exists  formed analogously. In Fourier space the action takes the

on the facef 4 , form
Svg,Va,74] Svg,Vg, 4]
1 op
=f dd1y{—a-vd<y)a-vd<y>+—vd<y>} _ L, 024 P
P PR vp =PI P L LRI
1
I P Ry g
g a 77d,x d,x ad_l fdyx y Ud(y) + F - Vd(k)_le%fl Ud(k+ 27T|/a)
a2a 5 3 d-1 aza
5 Mdx (3.9 xy(k+2ml/a) ][] (_1)|i)7]d(k)_777d(k)zl'
i=1
We have also included a term quadratic in the Lagrange mul- (3.13

tiplier field. This would not really be necessary, but its coef-
ficient @ will allow us to optimize the perfect equation’s The second sum ovéris restricted tan,e{1,2,... N}. In
locality and therefore it is of great practical importance. Nextthe above expression we have introduced
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TABLE I. Coupling of a corner field. TABLE II. Coupling of a center field.
Vs X=1/2 x=3/2 x="5/2 x=7/2 x=9/2 Vispsy X=1/2 x=23/2 x=5/2 x=7/2 x=9/2
y=1/2 428599 -0.42637 -0.00118 -0.00013 -0.00000y=1/2 0.00151 -0.00070 -0.00188 -0.00070 0.00151
y=3/2 -0.42637 -0.18734 -0.00227 -0.00003 -0.00000y=3/2 -00070  -0.19033 -0.61801 -0.19033 -0.00070
y=5/2 -0.00118 -0.00227 0.00151 0.00006 0.00000y=5/2 -0.00188 -0.61801 3.24027 -0.61801 -0.00188
y=7/2 -0.00013 -0.00003 0.00006 -0.00001 0.00000y=7/2 -0.00070 -0.19033 -0.61801 -0.19033 -0.00070
y=9/2 -0.00000 -0.00000 0.00000 0.00000 0.00000y=9/2 0.00151 -0.00070 -0.00188 -0.00070 0.00151
d-1 1— (=)™ Minimizing with respect to the auxiliary fieldy(k) yields
k=11 ——— (314
=1 ki op
74(K) = @qg(K)| Va(k)+ —— AL (K) |. (3.21
as the Fourier transform of the constant 1. The function P
d-1 . . Reinserting this into the action finally gives
2 sin(k;a/2)
Myk=11 — — (3.19
i=1 kia 1 1
S[vd]:FEk > Va(k) wqa(k)Va(k)
results from the Fourier transform oy .(y). In Fourier
space Eq(3.6) takes the form Sp
+wdd(k)EAL(k)Vd(k) - (3.22

)
V—E(SL(k)md(k)nd(k):o. (3.16

_k2 Ud(k)_

In Eq. (3.16 the momenturrk has the form of Eq(3.10

This is a perfect action for the Poisson equation in a finite
volume. The resulting perfect equation of motion takes the
form

with m; e N being an arbitrary integer. On the other hand, as

it stands,n4(k) is defined only for momenta witm;<N.
For other momentayy(k) naturally extends to

—kiy o Kg)=— Ky Kgo1),

(3.17

n4(Ka, - .. na(Kq, - ..
na(k+27li/a)=(—1)"in4(K).

Solving Eq.(3.16) yields

. (3.18

k—iH k k—ﬁé k
0aK)= 5| () 7a(K) = -8 (K)

We plug this back into the action and obtain

1
3 74(K) wga(k) ™t 7g(k)

1
Vg, nal= 552
a k

5
+V_SAL(k)ﬂd(k)J’_Vd(k)ﬂd(k)} (3.19

where
wag(K) 1= >, —————TII(k+2ml/a)?+ad?,
|-t (k+2l/a)?
(3.20
A(k)= S (k+2ml/a)————
L0 |e%1 Ltz )y

X I y(k+ 27 /a)(—1) 2 1,

)
wdd(kwd(k)mdd(k)V—EAL<k>=o. (3.23

By construction it is clear that this equation perfectly repre-
sents continuum physics. It was helpful to have an action
whose variation produced the perfect equation of motion, but
the action was not really necessary. As we will see later, all
we really need are the equations of motion. This is important
for the full Navier-Stokes problem, for which an action does
not exist.

For practical applications Eq3.23 needs to be trans-
formed back to coordinate space. It should be noted that
wyq(k) contains the arbitrary parameter Hence Eq(3.23
represents a whole family of perfect equations of motion.
Now we want to optimizex such that the equations become
as local as possible. For this purpose we congigeR. Then
the sums in Eq(3.20 can be performed analytically and one
obtains

wrdk) T=a T4

S 4sif(ak/2) 6 |
(3.24
Auky=a® - & 55 [ (D™
T g sim(aky2) 6 2sinak,/2) :

where agairk,;=mm, /L.

For the choice of a=1/6 this gives wyi(k;)
= 4/a’sirf(ak,/2), which corresponds to the standard ultralo-
cal second derivative in coordinate space. Transforming the
whole perfect equation of motiof8.23 to coordinate space
one obtains
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TABLE lll. Coupling of an edge field.

Vg  X=1/2 x=3/2 x="5/2 x=7/2 x=9/2

y=1/2 -0.00118 -0.42769 3.85830 -0.42769 -0.00118 =

3
y=3/2 -0.00227 -0.18965 -0.61602 -0.18965 -0.00227

y=5/2 -0.00151 -0.00070 -0.00188 -0.00070 -0.00151

y=712 0.00006  0.00002 -0.00011 0.00002 0.00006

y=9/2 0.00000 0.00000 -0.00000 0.00000 0.00000

1 op
;[Vz,xfra_2V2,x1+V2,x17a]IE (3-25)

for x,=(n—1/2)a with n#1N, i.e., for points away from
the boundary. At the left boundary one finds

1 2p
;[V2,3a/2_ 3Vyarnl =3 o (3.26

FIG. 2. Coupling of a corner field to the lattice.

and there is an analogous expression at the right boundary. It

is straightforward to verify that the averaged continuum so-+ecursion relation, relating the equations on the coarse lattice

lution does in fact satisfy these equations. In the continuunto the ones on the fine lattice. To find the recursion relation,

the Hagen-Poiseuille flow id=2 is given by we add to the action in the fine lattice variabMg, (with
spacinga) the constraint involving the coarse lattice vari-

1 5p ’ . .
va(yy)= = Eyl(yl_l-)- (3.27) ablesVy ,, (with spacing 2),

Consequently, the corresponding large scale lattice variable 1

takes the form Vi =i 2 Vi (4.2
XeX

2

a
XX~ + 350
(3.28 using a Lagrange multipliefq . Varying the action with
respect to the various fields yields equations analogous to the
which indeed solves Ed3.25. ones relating the continuum fields to the lattice fields

In d=3 the perfect equations of motion are no longer
ultralocal. Still, when we use the optimized=1/6 fromd
=2 also in three dimensions the equations turn out to be
extremely local. In coordinate space the equation of motion
takes the form

Vo — 1J‘xl+a12d _ 16p
247 a) Yiva(y1) = 20

op
D wgd(%, X Wqy=——AL(X), (3.29
x! Vp

where wqq(X,x") and A (x) are Fourier transforms of the E —
corresponding quantities in momentum space. Their values '3 .
for a three-dimensional system witi=5 anda=1 are 0.5 F-

given in Tables I-IIl for various values afand plots for the ]
same values are shown in Figs. 2—4. Also the values for 1
D, (x) (with Sp/vp set to 1 are provided in Table IV, and  ~%°
displayed in Fig. 5. 5

IV. INVARIANCE OF THE LATTICE EQUATIONS
OF MOTION UNDER A FACTOR 2 RGT

We would like to show explicitly that the lattice equations
of motions remain unchanged under a factor 2 renormaliza-
tion group transformation. To do this we must first find the FIG. 3. Coupling of a center field to the lattice.
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FIG. 4. Coupling of an edge field to the lattice. FIG. 5. Values oD (x).

op 1 r— VY .
; V,ywgq(y. )+ EDL(X)_Zd—lg B0 T (X) =0, wherek; = r/Ln; with n; e {1,N/2} only and

d-1

~ I1(2k)
, 1 m(k)=]] cogkar2)= T (4.4
Vd x/_ﬁz Vd,x_a’277d,x’=0- (4.2 =1
' 2 xex’
—0 is the Fourier transform of,(x). We note that in the above
d.x' =¥ equationszyy(k’) naturally extends to momenta>N/2 by
Here 64, (x)=1 for xex’ and zero otherwise and, is a A
constant to be adjusted to fit with our earlier choice of opti- na(k' +amji/a)=(—1)"py(k’). 4.9
mization parametest. Fourier transforming the above equa-
tions gives . , : .
Solving the first equation fov4(k) we obtain
op ~
Va(K) wgg(k) + Ewdd(k)AL(k)_H(k) 74(k)=0, 1 -~ 5p
Va(k)= 000 0= 200K, (46
Vik)— > Vek +amia)II(K' +7m/a)
me {0,391 Inserting this relation into the other two equations and
i1 comparing with Eq.(3.23 yields recursion formulas for
— wqq(kK) and A (K):
xIT (=1)i-azn(k)=0, (4.3
=
, Lk = k' +mm/a) !
(k' )=0, wgq(K") me{oE,l}d* wgy(K'+7m/a)
TABLE IV. Values of D, (x) for Sp/vp set to 1. XTI(K' + 7m/a)%+ a,,
x=1/2 x=3/2 x=5/2 x=7/2 x=9/2
y=1/2 0.45985 0.66567 0.66624 0.66567  0.45985 A|’_(k')= 2 o1 A (k' +mm/a)
me{0,1}°~
y=3/2 0.66567 0.99806 0.99902 0.99806 0.66567 4.7
y=5/2 0.66624 0.99902 0.99894  0.99902  0.66624 XTI(K' + mm/a)(—1) 2 ™.,

y=7/2 0.66567 0.99806 0.99902 0.99806 0.66567

y=9/2 045985 0.66567 0.66624 0.66567  0.45985We now plug in the explicit form ofuyq(k) from Eq.(3.20
into the first recursion relation




’ 2
H[2(k +7m))*
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TABLE V. Velocity field values forN=3.

x=1/2 x=3/2 x="5/2
y=1/2 0.81972 1.40674 0.81972
y=3/2 1.40674 2.48867 1.40674
y=>5/2 0.81972 1.40674 0.81972

’ r—1 1 >
wgg(k") "= , 2
me{0,0¢-1 1ezd-1 [K'+ (2l +m)/a]
X II[ 2k’ + 27 (21 + m)/a]?
0.5

~
"

S

+a2 H(k’ )2 lez
+mm 2.5
1.5
1 ’/(1'::/(2
1 1

— — o]

|7 e7d-1 (k’+277|’/a’)2 0

_ FIG. 6. Velocity field forN=3.
91 4 sirk(a’k! +2ml)) Y
X +ala+ ay,

=1 a'kj +2mlj recursive step will tend to converge to fixed values, thereby
providing the necessary information for the unknown sites.

In fact, we could have derived all the couplings in the above
where we have sdf =21;+m; anda’=2a in the last step. tables in this fashion by making ultralocal naive guesses for

Now, settinga,=3a2«, we recover the familiar form for the Poissonian and then performing recursions.
w4(k'). Thus we see that under the factor 2 recursion rela- In addition, we have numerically calculated the averaged

tion, wqq(k) for lattice spacing transforms intaw)j,(k') for ~ Vvelocity field forN=6, a=1 andN=3, a=2. This was
lattice spacing 2. It can be shown thak (k) behaves simi- doné by first numerically —transformingwgq(k) and
larly. The fact that the equations transform properly indeed?dd(K)AL(K) back into coordinate space. The values ob-
confirms that they are perfect lattice equations of motion. t@ined were then used to solve E§.29 for the lattice ve-

The recursion relation also serves as a powerful tool fOI!ocity field. The solution was found iteratively by making an

numerical methods because of the locality of the couplings'.nitial guess for the field values and then using the equation
f motion to find the field ak in terms of the fields ak’

For example, one cannot solve analytically the lattice equa® ) X ) o
tions for a rectangular cross section from which a smaller” - With each iterative step the velocity field awas re-

rectangular slice has been removed. However, B®) is placed(ifcﬁfferent) by the valug of the field as found through
not specific to a given channel geometry and hence it stilf® €quation of motion. The iteration was stopped once the
applies. To find the coupings for inward corner points onef!eld converged to stationary values. For the above cases the
need only choose a very fine lattice. On it specify the cou-f'eld_ values are provided in Taple_s V and VI and are plotted
plings already known, make ultralocal guesses for the unil Figs. 6 and 7. We have explicitly checked that a factor 2
known sites, and perform several recursions. Since the col®GT ©n the fine solution gives the coarse lattice fields val-
plings are so local, if the lattice is fine enough they serve a€S- The fact that they satisfy E.4) confirms that the

a very good approximation to the actual values that defingduations of motion found are perfect.

the equations of motion. Thus the averaging process of the

4.9

TABLE VI. Velocity field for N=86. V. THE PERFECT VELOCITY FIELD

Up to now we have shown that the perfect lattice equa-

x=1/2 x=3/2 x=5/2 x=7/2 x=9/2 x=11/2 . . . . .
tions of motion give exact results for the continuum fields
y=1/2 0.31513 0.68669 0.83510 0.83510 0.68669 0.3151;veraged over cubes. In many practical cases one is most
interested in these averaged quantities. Still, in some cases
y=3/2 0.68669 1.58922 1.97725 1.97725 1.58992 0.6866%ne would also like to know the values of the continuum
y=5/2 0.83510 1.97725 2.48758 2.48758 1.97725 o0.8351di€lds themselves. In particular, when one works on a very
coarse lattice the averaged lattice quantities may not contain
y=7/2 0.83510 1.97725 2.48758 2.48758 1.97725 0.8351@nough information and one would like to extract informa-
ion for continuum points. Fortunately, this is possible with a
y=9/2 068669 158922 197725 1.97725 1.58992 0'6866clg)erfect discretizatign. In fact, one c{in recor?struct the con-
y=11/2 0.31513 0.68669 0.83510 0.83510 0.68669 0.31513inuum field from the lattice data. For this purpose we insert

Eq. (3.2)) into Eq.(3.18 and obtain




5804 E. KATZ AND U.-J. WIESE PRE 58

For reasons of simplicity we restrict ourselves to an infinite
volume. The inclusion of boundary conditions is straightfor-
ward (though tedious and can be done in analogy to the

Hagen-Poiseuille flow. Although the above equation still fol-
lows from an action principle, here we restrict ourselves to

working with the equations of motion alone. Equati@®6)
then takes the form
1
0i(9iUJ(Y)—V—pf9jp+g 7j x0j x(¥)=0 (6.2
and we still have
1 d-1 2
Vix— 1), d* yvj(y)—a‘an; x=0, 7;x=0.
].X
(6.3
Similarly, the continuity equation leads to
1
. —gwi(y)+ 2 m0(y)=0 6.4
FIG. 7. Velocity field forN=6. vp X
1 1 5p and we also have
Ud(k)zﬁ I 4(K) wgg(k) ?Vd(k)_FEAL(k) L
Py— _df ddy p(Y)_aZIan:O’ 7y=0. (6.5
5p aJex
——do.(k)|, (5.1) _
vp Note that we have included a paramegeanalogous tar to

. . . o be optimized for locality later. It will turn out that this is not
which gives the continuum velocity field in terms of the necessary, because the equations of motion can be optimized

lattice fieldVq . Transforming back to coordinate space, onefor |ocality without it. Since we are now in an infinite vol-
can reconstruct exactly the continuum velocity field. Whenyme

one considers the continuum velocity field at lattice points
one finds d

5 Uj(k)=f ddij(y)H exp(—ikiyi), (6.6)
' P -
0g(0)=2 pag(xX W+ ——Ng(x). (5.2
x! vp d
— | g4 —ik.v.
For a two-dimensional systepyy and\ 4 are ultralocal and p(k) f d’y p(y)iﬂl exp(—ikivi), ©.9
1 16p wherek e R9. Hence it is convenient to now set
Ud(x): _(Vd,x+a+6vd,x+vd,x7a)___ (5-3)
8 3vp
for x#a/2,(N—1/2)a and for the boundary point=a/2 Vitkj=a 2 VJ'XLIJ exp(—ikixi), ©.8
1 16p d
va(8/2)= g (SVaartVazr) 3 o (5.4) P(K) :adE pxiﬂl exp(—ikix,), (6.9

For continuum points that are not lattice points one can als

obtain the values gby4 and\ 4 by Fourier transformation.

VI. PERFECT DISCRETIZATION FOR STATIC SLOW
FLOWS

Now we turn to general static flows with not necessarily
constant pressure gradients. In this case the Navier-Stokes

equation reduces to

1
d;djvi(y)= V—p&ip(y)- (6.1

%hereke[—w/a,w/a]d. We note that given the geometry
of Fig. 1, if P, lie at a pointx whose coordinates are integers,
thenV; , will lie at a pointx whosejth coordinate is a half
integer. Also, as before, it is possible to extend the lattice
fields to momenta outside- 7/a, w/a] by setting

Vj(k+2mliila)=Vj(k), i#]
Vj(k+2mljla)=(—1)"V;(k), (6.10

P(k+2wli/a)=P(k) foralli.
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We are thus ready to go to Fourier space where the above

equations take the form

— K20, (k) — V'—pkjp(k)+nj(k) 7,(K)=0, (6.1

vj(k)—lEZd v;(k+ 2l /) (k+ 27l /a)(—1)'i—a%ay,

0, (6.12

Vl_kjvj(k)+n(k)n(k)=0, (6.13
p
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iv

—(vp>2H<k)n<k)—k—fkjn,(k)n,-(k),
(6.15

p(k)

kik;— k25,
Tﬂj(k)m(k)-
(6.16

ivp
Ui(k):FkiH(k)n(k)_

Reinserting these back into Eq&.12 and (6.14 gives
equations of motion for the lattice fields and the Lagrange
multiplier fields

Vi(k) —ivpwi(k) 7(k) + wj; (k) (k) =0,

P(k)— >, p(k+2ml/a)ll(k+27l/a)—a2B75(k)=0. (6.17)
7d .
< 6.14 P(K)+ (vp) (k) m(K) + i vpaw; (K) 7;(K)=O.
Solving for the continuum fields we obtain Here we have introduced the functions
w(k)= > TI(k+27l/a)®+B=1+p, (6.18
A

ki+2’7T|i/a .

wi(k)= > IT;(k+ 27l /a)II(k+ 27l /a)(—1)", (6.19

S (k+ 27l /a)?

(ki+ 27, 1a) (K + 27 /a) — (k+ 2l /a) 25,

LT (k+ 277l /)T (k+ 27l /a) (— 1) i+ a%a.  (6.20

w;j (k)= >

le7d (k+27T|/a)4

We can rewrite the above equations in a simple fashion by

settingVy=P and ny= 7,

—0n~1
V,=0

v Mo (6.21)

where(} ,,

fields
(6.22

We must now optimize for locality. As before, we go do
=1 and chooser and g so that the equations of motion take
an ultralocal form. In one dimension E(5.22 becomes

Q,,V,=0.

1 [ a i12 sin(k/2)
(1+B)a—1[2 sink/2)]?| —i/2sinki2) 1+
P
X v =0. (6.23

Settinga=0 and =0, we obtain familiar ultralocal equa-
tions

2sink/2)V(k)=0, (6.29

is defined through the above relations. Finally,
we solve for the Lagrange multiplier fields and set them
equal to zero to obtain the equations of motion for the lattice

2i sin(k/2)P(k)=[2 sin(k/2)]2V (k). (6.295
Having solved this simplified version of the Navier-Stokes
equations, we proceed to add the nonlinear term.

VIl. PERTURBATIVE TREATMENT
OF THE NONLINEAR TERM

Since the nonlinear term of the Navier-Stokes equation is
quadratic in the velocity, it is possible to solve the lattice
equations of motion perturbatively. Here we demonstrate
how to do this for the first-order correction. We begin by
introducing the modified version of E¢6.11), now with the
new term

= o0k ()~ k2o, () ~ ok (K) T4 73(K) =0.
(7.9

Because we are only interested in the first-order correction
we need only keep terms in the nonlinear contribution that
are quadratic in the Lagrange multiplier fields. Thus, for the
nonlinear term, it is sufficient to express the continuum fields
as linear functions of the Lagrange fields. We make the fol-
lowing ansatz fop® andv(?, the second-order contribu-
tions:
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(2= An(k)2+ (k) B{(K) 73 (K) + 74(K) iy (K 7(K), " kiki — k23,
(7.2 0?00 = pr(k) == (KT 73(K). (77

(2) = 2
v;9=D;(kK)np(k)*+ n(K)E;; n:(K) + Fi, 7:(k k).
' A I A A A )(7_3) This procedure can now be repeated for the lattice fields. We

make the ansatz
Thenp® andv(® must obey the equations

o , 70 () =V, (0A,(K)V,(K), (7.8
|Vp k k 2 o p(klkJ_k 5”) 2..(2)
% ilL(k)“n°— T T TT; (k) 7 — Ko where againV,=P. Keeping only the second-order terms
yields
i
2) . i
-5 kip?=0, 74 —ivpaV,ASV,+w; (VAL V,—pV,01:SQ,,V,
=0, 7.9
kiv'?(k)=0. (7.5 (79
Solving them, we obtain (vp)? @V, ALV, + i prjV,U«ALVVV_ 1203V, 07,S0,,V,
p'? (k)= Vzpsn(k)z n(k)? (7.6 > 0
k? ' Here the following functions have been introduced:

S(k)= >, ;H(kntz 1/a)3 (7.10)
S (k+2ml/a)? e '

(k|+27T||/a.)(kJ+27T|]/a)_(k+277|/a)25”
I1, (k+ 27l ) L1 (k-+ 2l f) T1 (k+ 27l @) (— 1)1,

(7.12

Si(k=2>

lezd (k+27T|/a)6

We rewrite the above equations in a more compact form to a few nearby neighbors. In fact, we have performed nu-
N merical simulations using the perfectly discretized equations
QAL =My, (713 of motion for laminar flow in a channel with a quadratic

o ) ] ) ) ~cross section and we have verified explicitly that an arbi-
This finally gives the first-order nonlinear equation of mOt'O”trarily coarse lattice indeed gives continuum answers. Our
method can be directly applied to more general geometries,
although noncubic lattices require nontrivial modifications.
An important aspect of our construction are the so-called
perfect fields. Indeed, our method allows one to interpolate
the continuum fields from the lattice data. Hence, especially
when we are working on a coarse lattice, we are not limited
to lattice points.

In this paper we have performed steps towards a perfect Of course, a method such as that would be most welcome
discretization of the Navier-Stokes equations. The essentidh numerical simulations of more complicated fluid dynamics
idea is to define coarse grained variables by averaging thgystems, especially in the case of turbulence. In these simu-
continuum pressure and velocity fields over appropriate spdations the effects of a finite lattice spacing are the main
tial regions. The corresponding averaged field variables natisource of systematic errors. We have made a step in this
rally exist on a lattice. In the cases of Hagen-Poisseille flondirection by deriving the perfect equations of motion in the
and slow static flows in general we derived the exact equapresence of the nonlinear term that gives rise to turbulence.
tions of motion for the lattice variables and hence a perfecHowever, we have included that term only to first order,
discretization of the corresponding continuum equations. Thahile a perfect discretization of turbulent flows would re-
incorporation of boundary conditions is nontrivial and hasquire a treatment to all orders. This could be achieved nu-
been done explicitly for Hagen-Poisseille flow. For practicalmerically in analogy td5] by solving a minimization prob-
applications it is essential that the perfectly discretized equdem on a multigrid. When one wants to simulate turbulence
tions of motion are very localalthough in general not ul- one should not restrict oneself to static flows. Then the defi-
traloca). In particular, the lattice couplings to distant vari- nition of the averaged lattice variables should be generalized.
ables decay exponentially and one can safely restrict onesdlfi particular, one should also average pressure and velocity

Q,V,+0Q,,V\M! V,=0. (7.14

In principal, this procedure could be repeated to obtain non
linear lattice equations up to any order in the lattice fields.

VIIl. CONCLUSIONS
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in time. In addition, one may want to simulate compressibleNavier-Stokes problem requires a lot of work. Still, the steps
fluids, which would bring in an averaged density variable.that we have taken have led to promising results.
Our techniques are still applicable to these cases, but the
actual implementation is nontrivial.

In conclusion, we have proposed a renormalization group ACKNOWLEDGMENTS
treatment of problems in fluid dynamics. The renormaliza-
tion group implies that perfect discretizations of the con- We would like to thank W. Evers for very important dis-
tinuum Navier-Stokes equations exist. The perfectly dis-cussions during the initial stages of this project. We would
cretized equations of motion have been constructed explicithalso like to thank W. Bietenholz for very useful comments
for slow static flows and have been optimized for locality. and remarks about the paper. This work was supported in
This is essential in practical applications. The renormalizapart by funds provided by the U.S. Department of Energy
tion group offers a systematic way of treating small scaleunder Cooperative Research Agreement No. DE-FCO02-
effects in fluid dynamics. Realizing this program for the full 94ER40818.
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