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Lattice fluid dynamics from perfect discretizations of continuum flows

E. Katz and U.-J. Wiese
Center for Theoretical Physics, Laboratory for Nuclear Science, Department of Physics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
~Received 24 September 1997!

We use renormalization group methods to derive equations of motion for large scale variables in fluid
dynamics. The large scale variables are averages of the underlying continuum variables over cubic volumes
and naturally exist on a lattice. The resulting lattice dynamics represents a perfect discretization of continuum
physics, i.e., grid artifacts are completely eliminated. Perfect equations of motion are derived for static, slow
flows of incompressible, viscous fluids. For Hagen-Poiseuille flow in a channel with a square cross section the
equations reduce to a perfect discretization of the Poisson equation for the velocity field with Dirichlet
boundary conditions. The perfect large scale Poisson equation is used in a numerical simulation and is shown
to represent the continuum flow exactly. For nonsquare cross sections one can use a numerical iterative
procedure to derive flow equations that are approximately perfect.@S1063-651X~98!04511-5#

PACS number~s!: 47.10.1g
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I. INTRODUCTION

Problems of fluid flow are of great practical importance
such areas as mechanical engineering and meteorolog
full theoretical understanding of fluid flow is very difficu
because of the complex dynamics. In particular, in the
gime of fully developed turbulence we face a dynamical s
tem with fluctuations on all length scales. The small sc
structures influence the dynamics at larger scales in a
that is hard to control analytically. Numerical simulations a
therefore an essential tool in fluid dynamics. However, w
present day computers a full simulation of realistic proble
from first principles is beyond reach. Already simple mod
problems exhaust the biggest machines available. Henc
practical applications one makes additional assumptions
pecially about the small scale dynamics, that are difficult
justify theoretically and involve free parameters. In fact, t
primary systematic error in numerical simulations of flu
flow is due to the finite grid size that is necessary to d
cretize the continuum Navier-Stokes equations.

The main purpose of this paper is to point out that perf
discretizations, i.e., ones that are completely free of grid
tifacts, exist and can be constructed explicitly. The existe
of perfect discretizations is a direct consequence of Wilso
renormalization group theory@1#. The idea of the renormal
ization group is to deal with the fluctuations at differe
length scales step by step in scale. In this way the influe
of small scale fluctuations on the large scale dynamics ca
least in principle, be controlled exactly. The renormalizat
group approach has been useful in the study turbulence
has been applied to various problems previously~see@2–4#
for some examples!.

Recently, however, in the context of lattice quantum fie
theories so-called perfect actions have been constructed
various models using the renormalization group. Origina
Hasenfratz and Niedermayer iterated a renormalization gr
transformation to obtain a perfect discretization for the tw
dimensional O~3! nonlinears model and demonstrated th
grid artifacts were eliminated even on coarse lattices@5#. The
same method has been applied to lattice fermions@6,7#, four-
PRE 581063-651X/98/58~5!/5796~12!/$15.00
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dimensional pure SU~3! gauge theory@8#, and full QCD@9#.
Here we use similar methods in classical physics. In pr
ciple, the renormalization group can be used to derive per
discretizations for any differential equation. Examples
great practical importance are the Laplace and Poisson e
tions, Maxwell’s equations, and the Navier-Stokes equati
A perfect discretization of the Laplace equation was obtain
by Bell and Wilson in an early study of scalar lattice fie
theory@10#. The perfect action for a classical gauge field, a
hence a perfect discretization of Maxwell’s equations, h
been constructed in Refs.@8,9#. In this work we concentrate
on the Navier-Stokes equations. Here we do not treat
problem in its full complexity yet. Specifically, we restric
ourselves to incompressible fluids and we assume st
slow flows.

The first step in our program is to define large scale latt
variables from the underlying continuum fields. In the ca
of the Navier-Stokes equations these are the velocity
pressure fields. We average the continuum pressure ov
cube of side lengtha to define the large scale pressure va
ables, which then naturally exist on a lattice of spacinga
consisting of the cube centers. Similarly, the velocity field
averaged over the interface between two neighboring cu
and hence the corresponding lattice field exists on the li
connecting neighboring lattice points. This construction e
sures that the continuity equation maintains a simple form
the lattice. By construction we know exactly how the lar
scale variables are related to the continuum fields. The g
of the next step is to derive equations of motion for the la
scale fields. Solving these equations yields exact results
the averaged continuum quantities. This is in contrast
standard discretization procedures, where the lattice fi
represents an approximation of the continuum field at
same point. The approximation becomes exact only in
continuum limit a→0 because the value of the field at
specific point is influenced by the dynamics at arbitrar
small scales. A perfect discretization, on the other hand,
sures exact results for averaged continuum quantities alre
at finite a. Still, the values of the continuum fields can b
5796 © 1998 The American Physical Society
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PRE 58 5797LATTICE FLUID DYNAMICS FROM PERFECT . . .
reconstructed from the lattice data by using so-called per
fields.

The second step is to derive exact equations of motion
the lattice fields. One possibility to do that is to iterate
discrete renormalization group transformation. This is do
by starting on a very fine lattice~in fact, at the end the lattice
spacing of the fine lattice is sent to zero! and then performing
an infinite sequence of blocking steps, in which the latt
fields are averaged over blocks, and effective equation
motion for the block variables are derived. Here we proce
differently by blocking directly from the continuum. The re
sult is identical to the discrete, iterative procedure, but
derivation is more transparent. Wilson discovered this te
nique @11#, which has not been very well known until re
cently. For example, blocking from the continuum was a
used in the derivation of the QCD perfect action@9#. In con-
trast to quantum field theory there is no action for the f
Navier-Stokes problem. Still, blocking from the continuu
can be directly applied to the equations of motion. The c
straint that identifies the large scale lattice variables with
averaged continuum fields is implemented through
Lagrange multiplier. Solving the equations for the continuu
variables in terms of the lattice fields and plugging the res
back into the constraint equations leads to the equations
the large scale variables.

For numerical applications it is essential that the latt
equations of motion are as local as possible. In this pape
distinguish three types of locality: ultralocal, local, and no
local. A lattice equation is called ultralocal if it couples th
lattice field at a given site to a finite number of neighbori
sites only. Consider, for example, the one-dimensio
Laplace equation

d2f ~x!

dx2
50. ~1.1!

Its standard lattice discretization

1

a2
@ f ~x1a!22 f ~x!1 f ~x2a!#50 ~1.2!

is ultralocal because it couples the field at the pointx to its
nearest neighbors atx1a andx2a only. In general, a per-
fect discretization will not lead to an ultralocal coupling. Th
couplings to fields at distant sites are nonzero, but expon
tially suppressed. In that case we say that the lattice equa
is local. By optimizing the parameters of the renormalizat
group transformation one can control the strength of the
ponential decay. It turns out that the parameters can be
sen such that the perfect equations become ultralocal in
dimension. In practice, even in higher dimensions this le
to extremely local perfect lattice equations, whose expon
tially suppressed couplings to distant neighbors can safel
neglected. In particular, as it will become clear later, ev
the ultralocal equation~1.2! turns out to be perfect. This
would not be the case for the common approach to disc
zation problems, where one interprets lattice derivatives
approximations of continuum derivatives at the same po
Still, even then one can find a perfect discretization. It i
well known result in engineering that a smooth functionf (x)
can be reconstructed from its valuesf (na) on a lattice by
ct
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f ~x!5 (
nPZ

f ~na!
sinp~x/a2n!

p~x/a2n!
. ~1.3!

Here we have assumed thatf (x) is infinitely differentiable
and that its Fourier transform exists. The above equa
yields

d2f ~ma!

dx2
52

1

a2Fp2

3
f ~0!12 (

nPZ\$m%
f ~na!

~21!n2m

~n2m!2 G .

~1.4!

This exactly represents the continuum second derivative
the function at the lattice pointma. However, now the lattice
derivative comprises terms at arbitrarily large distances
their contributions are suppressed only powerlike. This
what we call a nonlocal coupling. In this case the contrib
tions from large distances cannot be neglected and there
this equation is not of practical use. In contrast, the adv
tage of using block averaged fields is that their perfect d
cretizations are local.

As opposed to previous applications of perfect discreti
tions, which dealt with infinite volumes or finite system
with periodic boundary conditions, the incorporation of mo
general boundary conditions is essential in fluid dynam
While it is straightforward to implement periodic bounda
conditions, it is more difficult to treat fixed boundary cond
tions, which occur in typical fluid dynamics application
Still, it turns out that fixed boundary conditions can be re
resented exactly in the perfect lattice equations. Here
restrict ourselves to channels whose cross section is a
angular polygon. Arbitrarily curved boundaries can in pri
ciple be handled using curvelinear coordinates, but we do
elaborate on this issue here.

The paper is organized as follows. In Sec. II we introdu
the large scale lattice pressure and velocity variables
blocking from the continuum and we investigate their beh
ior under discrete renormalization group transformatio
Section III contains the derivation of perfect equations
motion for Hagen-Poiseuille flow. The parameter in t
renormalization group transformation is optimized for u
tralocality in two dimensions. We verify explicitly that als
in three dimensions continuum physics is exactly rep
duced. In Sec. IV we show analytically that the equations
motion indeed satisfy a factor 2 renormalization group st
Section V presents results of a numerical calculation of
lattice fields. In Sec. VI we construct the perfect veloc
field that allows reconstruction of the continuum field fro
the lattice data. Section VII deals with static, slow flows
general. We derive the perfect lattice version of the cor
sponding Navier-Stokes equations. In Sec. VIII we presen
perturbative method of introducing the nonlinear term
equation of motion. Finally, Sec. IX contains concluding r
marks on how to extend our construction to the full Navie
Stokes equations and to arbitrarily shaped boundaries.
also speculate about applications of perfect discretization
numerical simulations of turbulent flows.

II. LARGE SCALE LATTICE VARIABLES

The continuum Navier-Stokes equations are formulated
terms of pressure and velocity variables. Here we cons
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5798 PRE 58E. KATZ AND U.-J. WIESE
static flows ind dimensions and hence pressurep(y) and
velocity v i(y) with i P$1,2, . . . ,d% are functions of the po-
sition vectory only. For incompressible fluids the velocit
field obeys the continuity equation

] iv i~y!50. ~2.1!

To define the large scale lattice pressure variablesPx the
continuum pressure fieldp(y) is averaged over ad-
dimensional cubecx of side lengtha centered atx,

Px5
1

adEcx

ddy p~y!. ~2.2!

The variablesPx naturally exist on a lattice of spacinga
formed by the cube centersx. Similarly, for the velocity field
we define

Vi ,x5
1

ad21Ef i ,x

dd21y v i~y!, ~2.3!

where f i ,x is the (d21)-dimensional face separating th
cubescx2a î /2 andcx1a î /2 . Note thatî is the unit vector in the
i direction. It is natural to associate the velocity variab
with the links connecting neighboring lattice sitesx2a î /2
and x1a î /2. Now the i component ofx is a half-integer
multiple of the lattice spacing. The lattice velocity variabl
can be interpreted as volume flow rates per cross secti
area of the faces separating neighboring cubes. This de
tion of the lattice velocity field is natural because the latt
continuity equation then assumes an ultralocal form. It
simply given by

dVx5(
i

@Vi ,x1a î /22Vx2a î /2#

5
1

ad21(i
F E

f i ,x1a î /2

dd21y v i~y!

2E
f i ,x2a î /2

dd21y v i~y!G
5

1

ad21E]cx

dd21s iv i~y!

5
1

ad21Ecx

ddy ] iv i~y!50. ~2.4!

Here we have used Gauss’s law together with the continu
continuity equation. The definition of lattice variables b
blocking from the continuum can be viewed as a renorm
ization group transformation with an infinite blocking facto
In fact, the same result could be obtained by iterating blo
factor 2 transformations starting from an arbitrarily fine la
tice. To identify the corresponding factor 2 transformati
we now block from the continuum to a lattice of twice th
lattice spacinga852a. The continuum pressure variable
s

al
ni-

s

m

l-

k

are then integrated over cubescx8
8 of side lengtha8 that

contain 2d original cubescx . Hence the resulting pressur
variable

Px8
8 5

1

a8dEc
x8
8

ddy p~y!

5
1

2d (
xPx8

1

adEcx

ddy p~y!

5
1

2d (
xPx8

Px ~2.5!

on the coarse lattice is a block average of the pressure v
ables on the fine lattice. We usexPx8 to denote that the
cubecx belongs to the blockcx8

8 . The corresponding geom
etry is illustrated in Fig. 1. Similarly, for the velocity field
we have

Vi ,x8
8 5

1

a8d21Ef
i ,x8
8

dd21y v i~y!

5
1

2d21 (
xPx8

1

ad21Ef i ,x

dd21y v i~y!5
1

2d21 (
xPx8

Vi ,x .

~2.6!

Here xPx8 denotes that the sum includes facesf i ,x on the
fine lattice that belong to the facef i ,x8

8 on the coarse lattice
Of course, by construction the coarse lattice velocity va
ables also obey the continuity equation. This block facto
renormalization group transformation~RGT! will be used
later to demonstrate that the structure of the perfect equat
of motion reproduces itself under renormalization.

III. PERFECT EQUATIONS OF MOTION FOR HAGEN-
POISEUILLE FLOW

For simplicity we first discuss the derivation of perfe
equations of motion in the context of Hagen-Poiseuille flo
The general equations for static, slow flows are derived
Sec. VI. We start from the Navier-Stokes equation

] tv i~y!1@v j~y!] j #v i~y!52
1

r
] i p~y!1n] j] jv i~y!.

~3.1!

FIG. 1. Geometry of the block factor 2 renormalization gro
transformation.
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PRE 58 5799LATTICE FLUID DYNAMICS FROM PERFECT . . .
Here n is the kinematic viscosity of the fluid andr is its
density. We restrict ourselves to incompressible flows, i.e
a constant density, and thus the continuity equation app
The appropriate boundary condition for a viscous fluid a
fixed wall is v i(y)50 for all i . Furthermore, we conside
static Hagen-Poiseuille flow, i.e., a constant pressure gr
ent dp, in a channel with square cross sectionA5Ld21

along thed direction. Hence the pressure is given byp(y)
5dpyd . The velocity is along the channel, i.e., onlyvd(y) is
nonzero and in addition independent ofyd . Then the equa-
tions reduce to the (d21)-dimensional Poisson equation

] i] ivd~y!5
dp

nr
, ~3.2!

with Dirichlet boundary conditionsvd(y)50 at the edge of
the square. This equation follows from a variational princip
of an action

S@vd#5E
A
dd21yF1

2
] ivd~y!] ivd~y!1

dp

nr
vd~y!G .

~3.3!

Note that herei runs from 1 tod21 only. The action is
useful in our derivation of the perfect equations of motio
Yet we want to stress that the existence of an action is
really necessary. This is crucial because there is no ac
principle for the full Navier-Stokes problem. In fact, writin
the above action was possible only because we have
moved the time dependent dissipative element of the
problem and have forced the flow to be static.

What is the perfect discretization of the Poisson equati
To answer that question we consider the large scale la
variable

Vd,x5
1

ad21Ef d,x

dd21y vd~y!. ~3.4!

Note that the face f d,x is nothing more than a
(d21)-dimensional cube andVd,x behaves practically as
(d21)-dimensional scalar. We want to impose Eq.~3.4! as a
constraint for each facef d,x . For this purpose we add it to
the action using a Lagrange multiplier fieldhd,x that exists
on the facef d,x

S@vd ,Vd ,hd#

5E
A
dd21yF1

2
] ivd~y!] ivd~y!1

dp

nr
vd~y!G

1(
x

ad21Fhd,xS Vd,x2
1

ad21Ef d,x

dd21y vd~y!D
2

a2a

2
hd,x

2 G . ~3.5!

We have also included a term quadratic in the Lagrange m
tiplier field. This would not really be necessary, but its co
ficient a will allow us to optimize the perfect equation’
locality and therefore it is of great practical importance. Ne
to
s.
a

i-

.
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?
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we derive equations of motion from the variational princip
of the action. Varying the action with respect tovd(y) yields

] i] ivd~y!2
dp

nr
1(

x
hd,xud,x~y!50, ~3.6!

where ud,x(y)51 for yP f d,x and zero otherwise. Varying
the action with respect tohd,x one obtains

Vd,x2
1

ad21Ef d,x

dd21y vd~y!2a2ahd,x50. ~3.7!

It appears that the constraint of Eq.~3.4! is correctly imple-
mented only fora50. However, varying the action with
respect toVd,x gives

hd,x50. ~3.8!

To solve the above equations we now go to moment
space. Since the velocity vanishes at the boundary the ap
priate Fourier transform takes the form

vd~k!5E
A
dd21y vd~y!)

i 51

d21

sin~kiyi !. ~3.9!

Here the

ki5
p

L
mi ~3.10!

are discrete momenta withmiPN. Note thatvd(k) extends
naturally to negative momentum values because

vd~k1 , . . . ,2ki , . . . ,kd21!52vd~k1 , . . . ,ki , . . . ,kd21!.
~3.11!

Similarly, for the lattice velocity field we have

Vd~k!5ad21(
x

Vd,x)
i 51

d21

sin~kiyi !. ~3.12!

Now the sum is finite and extends overmi51,2, . . . ,N only,
whereN5L/a. The Lagrange multiplier fieldhd,x is trans-
formed analogously. In Fourier space the action takes
form

S@vd ,Vd ,hd#

5
1

ad21 (
kP~pN/L !d21

F1

2
k2vd~k!21

dp

nr
dL~k!vd~k!G

1
1

ad21(k
F S Vd~k!2 (

l PZd21
vd~k12p l /a!

3Pd~k12p l /a!)
i 51

d21

~21! l i D hd~k!2
a2a

2
hd~k!2G .

~3.13!

The second sum overk is restricted tomiP$1,2, . . . ,N%. In
the above expression we have introduced
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dL~k!5 )
i 51

d21
12~21!mi

ki
~3.14!

as the Fourier transform of the constant 1. The function

Pd~k!5 )
i 51

d21
2 sin~kia/2!

kia
~3.15!

results from the Fourier transform ofud,x(y). In Fourier
space Eq.~3.6! takes the form

2k2 vd~k!2
dp

nr
dL~k!1Pd~k!hd~k!50. ~3.16!

In Eq. ~3.16! the momentumk has the form of Eq.~3.10!
with miPN being an arbitrary integer. On the other hand,
it stands,hd(k) is defined only for momenta withmi<N.
For other momentahd(k) naturally extends to

hd~k1 , . . . ,2ki , . . . ,kd21!52hd~k1 , . . . ,ki , . . . ,kd21!,
~3.17!

hd~k12p l i î /a!5~21! l ihd~k!.

Solving Eq.~3.16! yields

vd~k!5
1

k2FPd~k!hd~k!2
dp

nr
dL~k!G . ~3.18!

We plug this back into the action and obtain

S@Vd ,hd#5
1

ad21(k
F2

1

2
hd~k!vdd~k!21hd~k!

1
dp

nr
DL~k!hd~k!1Vd~k!hd~k!G , ~3.19!

where

vdd~k!215 (
l PZd21

1

~k12p l /a!2
P~k12p l /a!21aa2,

~3.20!

DL~k!5 (
l PZd21

dL~k12p l /a!
1

~k12p l /a!2

3Pd~k12p l /a!~21!(
i

l i.

TABLE I. Coupling of a corner field.

V(1/2,1/2) x51/2 x53/2 x55/2 x57/2 x59/2

y51/2 4.28599 -0.42637 -0.00118 -0.00013 -0.000

y53/2 -0.42637 -0.18734 -0.00227 -0.00003 -0.000

y55/2 -0.00118 -0.00227 0.00151 0.00006 0.000

y57/2 -0.00013 -0.00003 0.00006 -0.00001 0.000

y59/2 -0.00000 -0.00000 0.00000 0.00000 0.000
s

Minimizing with respect to the auxiliary fieldhd(k) yields

hd~k!5vdd~k!S Vd~k!1
dp

nr
DL~k! D . ~3.21!

Reinserting this into the action finally gives

S@Vd#5
1

ad21(k
F1

2
Vd~k!vdd~k!Vd~k!

1vdd~k!
dp

nr
DL~k!Vd~k!G . ~3.22!

This is a perfect action for the Poisson equation in a fin
volume. The resulting perfect equation of motion takes
form

vdd~k!Vd~k!1vdd~k!
dp

nr
DL~k!50. ~3.23!

By construction it is clear that this equation perfectly rep
sents continuum physics. It was helpful to have an act
whose variation produced the perfect equation of motion,
the action was not really necessary. As we will see later,
we really need are the equations of motion. This is import
for the full Navier-Stokes problem, for which an action do
not exist.

For practical applications Eq.~3.23! needs to be trans
formed back to coordinate space. It should be noted
vdd(k) contains the arbitrary parametera. Hence Eq.~3.23!
represents a whole family of perfect equations of motio
Now we want to optimizea such that the equations becom
as local as possible. For this purpose we considerd52. Then
the sums in Eq.~3.20! can be performed analytically and on
obtains

v22~k1!215a2F 1

4 sin2~ak1/2!
2

1

6
1aG ,

~3.24!

DL~k1!5a3F 1

8 sin3~ak1/2!
2

1

6

1

2 sin~ak1/2!G @12~21!m1#,

where againk15pm1 /L.
For the choice of a51/6 this gives v22(k1)

54/a2sin2(ak1/2), which corresponds to the standard ultra
cal second derivative in coordinate space. Transforming
whole perfect equation of motion~3.23! to coordinate space
one obtains

TABLE II. Coupling of a center field.

V(5/2,5/2) x51/2 x53/2 x55/2 x57/2 x59/2

y51/2 0.00151 -0.00070 -0.00188 -0.00070 0.001

y53/2 -00070 -0.19033 -0.61801 -0.19033 -0.000

y55/2 -0.00188 -0.61801 3.24027 -0.61801 -0.001

y57/2 -0.00070 -0.19033 -0.61801 -0.19033 -0.000

y59/2 0.00151 -0.00070 -0.00188 -0.00070 0.001
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1

a2
@V2,x11a22V2,x1

1V2,x12a#5
dp

nr
~3.25!

for x15(n21/2)a with nÞ1,N, i.e., for points away from
the boundary. At the left boundary one finds

1

a2
@V2,3a/223V2,a/2#5

2

3

dp

nr
~3.26!

and there is an analogous expression at the right bounda
is straightforward to verify that the averaged continuum
lution does in fact satisfy these equations. In the continu
the Hagen-Poiseuille flow ind52 is given by

v2~y1!5
1

2

dp

nr
y1~y12L !. ~3.27!

Consequently, the corresponding large scale lattice vari
takes the form

V2,x1
5

1

aEx12a/2

x11a/2

dy1v2~y1!5
1

2

dp

nrFx1~x12L !1
a2

12G ,
~3.28!

which indeed solves Eq.~3.25!.
In d53 the perfect equations of motion are no long

ultralocal. Still, when we use the optimizeda51/6 from d
52 also in three dimensions the equations turn out to
extremely local. In coordinate space the equation of mot
takes the form

(
x8

vdd~x,x8!Vd,x852
dp

nr
DL~x!, ~3.29!

where vdd(x,x8) and DL(x) are Fourier transforms of th
corresponding quantities in momentum space. Their va
for a three-dimensional system withN55 and a51 are
given in Tables I–III for various values ofx and plots for the
same values are shown in Figs. 2–4. Also the values
DL(x) ~with dp/nr set to 1! are provided in Table IV, and
displayed in Fig. 5.

IV. INVARIANCE OF THE LATTICE EQUATIONS
OF MOTION UNDER A FACTOR 2 RGT

We would like to show explicitly that the lattice equation
of motions remain unchanged under a factor 2 renormal
tion group transformation. To do this we must first find t

TABLE III. Coupling of an edge field.

V(5/2,1/2) x51/2 x53/2 x55/2 x57/2 x59/2

y51/2 -0.00118 -0.42769 3.85830 -0.42769 -0.001

y53/2 -0.00227 -0.18965 -0.61602 -0.18965 -0.002

y55/2 -0.00151 -0.00070 -0.00188 -0.00070 -0.001

y57/2 0.00006 0.00002 -0.00011 0.00002 0.000

y59/2 0.00000 0.00000 -0.00000 0.00000 0.000
. It
-

m

le

r

e
n

es

r

a-

recursion relation, relating the equations on the coarse la
to the ones on the fine lattice. To find the recursion relati
we add to the action in the fine lattice variablesVd,x ~with
spacinga) the constraint involving the coarse lattice va
ablesVd,x8

8 ~with spacing 2a),

Vd,x8
8 5

1

2d21 (
xPx8

Vd,x , ~4.1!

using a Lagrange multiplierhd,x8 . Varying the action with
respect to the various fields yields equations analogous to
ones relating the continuum fields to the lattice fields

FIG. 2. Coupling of a corner field to the lattice.

FIG. 3. Coupling of a center field to the lattice.
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(
y

Vyvdd~y,x!1
dp

nr
DL~x!2

1

2d21(x
ud,x8hd,x8~x!50,

Vd,x8
8 2

1

2d21 (
xPx8

Vd,x2a2hd,x850, ~4.2!

hd,x850.

Hereud,x8(x)51 for xPx8 and zero otherwise anda2 is a
constant to be adjusted to fit with our earlier choice of op
mization parametera. Fourier transforming the above equ
tions gives

Vd~k!vdd~k!1
dp

nr
vdd~k!DL~k!2P̃~k!hd~k!50,

Vd8~k8!2 (
mP$0,1%d21

Vd~k81pm/a!P̃~k81pm/a!

3 )
i 51

d21

~21! i
l2a2h~k8!50, ~4.3!

h~k8!50,

FIG. 4. Coupling of an edge field to the lattice.

TABLE IV. Values of DL(x) for dp/nr set to 1.

x51/2 x53/2 x55/2 x57/2 x59/2

y51/2 0.45985 0.66567 0.66624 0.66567 0.459

y53/2 0.66567 0.99806 0.99902 0.99806 0.665

y55/2 0.66624 0.99902 0.99894 0.99902 0.666

y57/2 0.66567 0.99806 0.99902 0.99806 0.665

y59/2 0.45985 0.66567 0.66624 0.66567 0.459
-

whereki85p/Lni with niP$1,N/2% only and

P̃~k!5 )
i 51

d21

cos~kia/2!5
P~2k!

P~k!
~4.4!

is the Fourier transform ofux8(x). We note that in the above
equationshd(k8) naturally extends to momentani.N/2 by

hd~k81pmi î /a!5~21!mihd~k8!. ~4.5!

Solving the first equation forVd(k) we obtain

Vd~k!5
1

2d21
v~k!21P̃~k!2

dp

nr
DL~k!. ~4.6!

Inserting this relation into the other two equations a
comparing with Eq.~3.23! yields recursion formulas for
vdd(k) andDL(k):

vdd8 ~k8!215 (
mP$0,1%d21

vdd~k81pm/a!21

3P̃~k81pm/a!21a2 ,

DL8~k8!5 (
mP$0,1%d21

DL~k81pm/a!

~4.7!

3P̃~k81pm/a!~21!(
i

mi.

We now plug in the explicit form ofvdd(k) from Eq. ~3.20!
into the first recursion relation

FIG. 5. Values ofDL(x).
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vdd8 ~k8!215 (
mP$0,1%d21

(
l PZd21

1

@k81p~2l 1m!/a#2

3P@2k812p~2l 1m!/a#2

1a2a
P@2~k81pm!#2

P~k81pm!2
1a2

5 (
l 8PZd21

1

~k812p l 8/a8!2

3 )
i 51

d21 4 sin2~a8ki812p l i8!

a8ki812p l i8
1a2a1a2 ,

~4.8!

where we have setl i852l i1mi anda852a in the last step.
Now, settinga253a2a, we recover the familiar form for
vdd8 (k8). Thus we see that under the factor 2 recursion re
tion, vdd(k) for lattice spacinga transforms intovdd8 (k8) for
lattice spacing 2a. It can be shown thatDL(k) behaves simi-
larly. The fact that the equations transform properly inde
confirms that they are perfect lattice equations of motion

The recursion relation also serves as a powerful tool
numerical methods because of the locality of the couplin
For example, one cannot solve analytically the lattice eq
tions for a rectangular cross section from which a sma
rectangular slice has been removed. However, Eq.~4.2! is
not specific to a given channel geometry and hence it
applies. To find the coupings for inward corner points o
need only choose a very fine lattice. On it specify the c
plings already known, make ultralocal guesses for the
known sites, and perform several recursions. Since the
plings are so local, if the lattice is fine enough they serve
a very good approximation to the actual values that de
the equations of motion. Thus the averaging process of

TABLE V. Velocity field values forN53.

x51/2 x53/2 x55/2

y51/2 0.81972 1.40674 0.81972

y53/2 1.40674 2.48867 1.40674

y55/2 0.81972 1.40674 0.81972

TABLE VI. Velocity field for N56.

x51/2 x53/2 x55/2 x57/2 x59/2 x511/2

y51/2 0.31513 0.68669 0.83510 0.83510 0.68669 0.31

y53/2 0.68669 1.58922 1.97725 1.97725 1.58992 0.68

y55/2 0.83510 1.97725 2.48758 2.48758 1.97725 0.83

y57/2 0.83510 1.97725 2.48758 2.48758 1.97725 0.83

y59/2 0.68669 1.58922 1.97725 1.97725 1.58992 0.68

y511/2 0.31513 0.68669 0.83510 0.83510 0.68669 0.31
-

d

r
s.
a-
r

ill
e
-
-
u-
s
e
e

recursive step will tend to converge to fixed values, there
providing the necessary information for the unknown sit
In fact, we could have derived all the couplings in the abo
tables in this fashion by making ultralocal naive guesses
the Poissonian and then performing recursions.

In addition, we have numerically calculated the averag
velocity field for N56, a51 and N53, a52. This was
done by first numerically transformingvdd(k) and
vdd(k)DL(k) back into coordinate space. The values o
tained were then used to solve Eq.~3.29! for the lattice ve-
locity field. The solution was found iteratively by making a
initial guess for the field values and then using the equa
of motion to find the field atx in terms of the fields atx8
Þx. With each iterative step the velocity field atx was re-
placed~if different! by the value of the field as found throug
the equation of motion. The iteration was stopped once
field converged to stationary values. For the above cases
field values are provided in Tables V and VI and are plot
in Figs. 6 and 7. We have explicitly checked that a facto
RGT on the fine solution gives the coarse lattice fields v
ues. The fact that they satisfy Eq.~3.4! confirms that the
equations of motion found are perfect.

V. THE PERFECT VELOCITY FIELD

Up to now we have shown that the perfect lattice eq
tions of motion give exact results for the continuum fiel
averaged over cubes. In many practical cases one is m
interested in these averaged quantities. Still, in some c
one would also like to know the values of the continuu
fields themselves. In particular, when one works on a v
coarse lattice the averaged lattice quantities may not con
enough information and one would like to extract inform
tion for continuum points. Fortunately, this is possible with
perfect discretization. In fact, one can reconstruct the c
tinuum field from the lattice data. For this purpose we ins
Eq. ~3.21! into Eq. ~3.18! and obtain

FIG. 6. Velocity field forN53.
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vd~k!5
1

k2FPd~k!vdd~k!S 1

a2
Vd~k!1

dp

nr
DL~k!D

2
dp

nr
dL~k!G , ~5.1!

which gives the continuum velocity field in terms of th
lattice fieldVd . Transforming back to coordinate space, o
can reconstruct exactly the continuum velocity field. Wh
one considers the continuum velocity field at lattice poi
one finds

vd~x!5(
x8

rdd~x,x8!Vd,x81
dp

nr
ld~x!. ~5.2!

For a two-dimensional systemrdd andld are ultralocal and

vd~x!5
1

8
~Vd,x1a16Vd,x1Vd,x2a!2

1

3

dp

nr
~5.3!

for xÞa/2,(N21/2)a and for the boundary pointx5a/2

vd~a/2!5
1

8
~5Vd,a/21Vd,3a/2!2

1

3

dp

nr
. ~5.4!

For continuum points that are not lattice points one can a
obtain the values ofrdd andld by Fourier transformation.

VI. PERFECT DISCRETIZATION FOR STATIC SLOW
FLOWS

Now we turn to general static flows with not necessar
constant pressure gradients. In this case the Navier-St
equation reduces to

] j] jv i~y!5
1

nr
] i p~y!. ~6.1!

FIG. 7. Velocity field forN56.
n
s

o

es

For reasons of simplicity we restrict ourselves to an infin
volume. The inclusion of boundary conditions is straightfo
ward ~though tedious! and can be done in analogy to th
Hagen-Poiseuille flow. Although the above equation still fo
lows from an action principle, here we restrict ourselves
working with the equations of motion alone. Equation~3.6!
then takes the form

] i] iv j~y!2
1

nr
] j p1(

x
h j ,xu j ,x~y!50 ~6.2!

and we still have

Vj ,x2
1

ad21Ef j ,x

dd21y v j~y!2a2ah j ,x50, h j ,x50.

~6.3!

Similarly, the continuity equation leads to

1

nr
] iv i~y!1(

x
hxux~y!50 ~6.4!

and we also have

Px2
1

adEcx

ddy p~y!2a2bhx50, hx50. ~6.5!

Note that we have included a parameterb analogous toa to
be optimized for locality later. It will turn out that this is no
necessary, because the equations of motion can be optim
for locality without it. Since we are now in an infinite vol
ume

v j~k!5E ddy v j~y!)
i 51

d

exp~2 ik iyi !, ~6.6!

p~k!5E ddy p~y!)
i 51

d

exp~2 ik iyi !, ~6.7!

wherekPRd. Hence it is convenient to now set

Vj~k!5ad21(
x

Vj ,x)
iÞ j

exp~2 ik ixi !, ~6.8!

P~k!5ad(
x

Px)
i 51

d

exp~2 ik ixi !, ~6.9!

wherekP@2p/a,p/a#d. We note that given the geometr
of Fig. 1, if Px lie at a pointx whose coordinates are integer
thenVj ,x will lie at a point x whosej th coordinate is a half
integer. Also, as before, it is possible to extend the latt
fields to momenta outside@2p/a,p/a# by setting

Vj~k12p l i î /a!5Vj~k!, iÞ j

Vj~k12p l j ĵ /a!5~21! l jVj~k!, ~6.10!

P~k12p l i î /a!5P~k! for all i .
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We are thus ready to go to Fourier space where the ab
equations take the form

2k2v j~k!2
i

nr
kj p~k!1P j~k!h j~k!50, ~6.11!

Vj~k!2 (
l PZd

v j~k12p l /a!P j~k12p l /a!~21! l j2a2ah j

50, ~6.12!

i

nr
kjv j~k!1P~k!h~k!50, ~6.13!

P~k!2 (
l PZd

p~k12p l /a!P~k12p l /a!2a2bh~k!50.

~6.14!

Solving for the continuum fields we obtain
b

ly
m
ic

e

-

ve
p~k!52~nr!2P~k!h~k!2

inr

k2
kjP j~k!h j~k!,

~6.15!

v i~k!5
inr

k2
kiP~k!h~k!2

kikj2k2d i j

k4
P j~k!h j~k!.

~6.16!

Reinserting these back into Eqs.~6.12! and ~6.14! gives
equations of motion for the lattice fields and the Lagran
multiplier fields

Vi~k!2 inrv i~k!h~k!1v i j ~k!h j~k!50,
~6.17!

P~k!1~nr!2v~k!h~k!1 inrv j~k!h j~k!50.

Here we have introduced the functions
v~k!5 (
l PZd

P~k12p l /a!21b511b, ~6.18!

v i~k!5 (
l PZd

ki12p l i /a

~k12p l /a!2
P i~k12p l /a!P~k12p l /a!~21! l i, ~6.19!

v i j ~k!215 (
l PZd

~ki12p l i /a!~kj12p l j /a!2~k12p l /a!2d i j

~k12p l /a!4
P i~k12p l /a!P j~k12p l /a!~21! l i1 l j1a2a. ~6.20!
es

is
ce
ate
y

tion
hat
he
lds
fol-
-

We can rewrite the above equations in a simple fashion
settingV05P andh05h,

Vm5Vmn
21hn , ~6.21!

whereVmn is defined through the above relations. Final
we solve for the Lagrange multiplier fields and set the
equal to zero to obtain the equations of motion for the latt
fields

VmnVn50. ~6.22!

We must now optimize for locality. As before, we go tod
51 and choosea andb so that the equations of motion tak
an ultralocal form. In one dimension Eq.~6.22! becomes

1

~11b!a21/@2 sin~k/2!#2S a i /2 sin~k/2!

2 i /2 sin~k/2! 11b D
3S P

VD 50. ~6.23!

Settinga50 andb50, we obtain familiar ultralocal equa
tions

2sin~k/2!V~k!50, ~6.24!
y

,

e

2i sin~k/2!P~k!5@2 sin~k/2!#2V~k!. ~6.25!

Having solved this simplified version of the Navier-Stok
equations, we proceed to add the nonlinear term.

VII. PERTURBATIVE TREATMENT
OF THE NONLINEAR TERM

Since the nonlinear term of the Navier-Stokes equation
quadratic in the velocity, it is possible to solve the latti
equations of motion perturbatively. Here we demonstr
how to do this for the first-order correction. We begin b
introducing the modified version of Eq.~6.11!, now with the
new term

2
i

n
v j~k!kjv i~k!2k2v i~k!2

i

nr
kiv i~k!1P j~k!h j~k!50.

~7.1!

Because we are only interested in the first-order correc
we need only keep terms in the nonlinear contribution t
are quadratic in the Lagrange multiplier fields. Thus, for t
nonlinear term, it is sufficient to express the continuum fie
as linear functions of the Lagrange fields. We make the
lowing ansatz forp(2) and v i

(2) , the second-order contribu
tions:
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p~2!5Ah~k!21h~k!Bj~k!h j~k!1h i~k!Ci j ~k!h j~k!,
~7.2!

v i
~2!5Di~k!h~k!21h~k!Ei j h j~k!1Fi jkh j~k!hk~k!.

~7.3!

Thenp(2) andv i
(2) must obey the equations

inr2

k2
kiP~k!2h22h

r~kikj2k2d i j !

k4
P~k!P j~k!h j2k2v i

~2!

2
i

nr
kip

~2!50, ~7.4!

kiv i
~2!~k!50. ~7.5!

Solving them, we obtain

p~2!~k!5n2r3
P~k!2

k2
h~k!2, ~7.6!
on

on
s.

fe
nt
t
p
at
ow
u
ec
Th
as
a
u

-
ri-
s

v i
~2!~k!5rh~k!

kikj2k2d i j

k6
P j~k!P~k!h j~k!. ~7.7!

This procedure can now be repeated for the lattice fields.
make the ansatz

hl
~2!~k!5Vm~k!Amn

l ~k!Vn~k!, ~7.8!

where againV05P. Keeping only the second-order term
yields

2 inrv iVmAmn
0 Vn1v i j ~k!VmAmn

j Vn2rVmVm0
T Si j V j nVn

50, ~7.9!

~nr!2vVmAmn
0 Vn1 inrv jVmAmn

j Vn2n2r3VmVm0
T SV0nVn

50. ~7.10!

Here the following functions have been introduced:
S~k!5 (
l PZd

1

~k12p l /a!2
P i~k12p l /a!3, ~7.11!

Si j ~k!5 (
l PZd

~ki12p l i /a!~kj12p l j /a!2~k12p l /a!2d i j

~k12p l /a!6
P i~k12p l /a!P j~k12p l /a!P~k12p l /a!~21! l i1 l j .

~7.12!
nu-
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bi-
ur
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We rewrite the above equations in a more compact form

Vsl
21Amn

l 5Mmn
s . ~7.13!

This finally gives the first-order nonlinear equation of moti

VmnVn1VmnVlMls
n Vs50. ~7.14!

In principal, this procedure could be repeated to obtain n
linear lattice equations up to any order in the lattice field

VIII. CONCLUSIONS

In this paper we have performed steps towards a per
discretization of the Navier-Stokes equations. The esse
idea is to define coarse grained variables by averaging
continuum pressure and velocity fields over appropriate s
tial regions. The corresponding averaged field variables n
rally exist on a lattice. In the cases of Hagen-Poisseille fl
and slow static flows in general we derived the exact eq
tions of motion for the lattice variables and hence a perf
discretization of the corresponding continuum equations.
incorporation of boundary conditions is nontrivial and h
been done explicitly for Hagen-Poisseille flow. For practic
applications it is essential that the perfectly discretized eq
tions of motion are very local~although in general not ul
tralocal!. In particular, the lattice couplings to distant va
ables decay exponentially and one can safely restrict one
-

ct
ial
he
a-
u-

a-
t
e

l
a-

elf

to a few nearby neighbors. In fact, we have performed
merical simulations using the perfectly discretized equati
of motion for laminar flow in a channel with a quadrat
cross section and we have verified explicitly that an ar
trarily coarse lattice indeed gives continuum answers. O
method can be directly applied to more general geometr
although noncubic lattices require nontrivial modification
An important aspect of our construction are the so-cal
perfect fields. Indeed, our method allows one to interpol
the continuum fields from the lattice data. Hence, especi
when we are working on a coarse lattice, we are not limi
to lattice points.

Of course, a method such as that would be most welco
in numerical simulations of more complicated fluid dynam
systems, especially in the case of turbulence. In these s
lations the effects of a finite lattice spacing are the m
source of systematic errors. We have made a step in
direction by deriving the perfect equations of motion in t
presence of the nonlinear term that gives rise to turbulen
However, we have included that term only to first ord
while a perfect discretization of turbulent flows would r
quire a treatment to all orders. This could be achieved
merically in analogy to@5# by solving a minimization prob-
lem on a multigrid. When one wants to simulate turbulen
one should not restrict oneself to static flows. Then the d
nition of the averaged lattice variables should be generaliz
In particular, one should also average pressure and velo
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in time. In addition, one may want to simulate compressi
fluids, which would bring in an averaged density variab
Our techniques are still applicable to these cases, but
actual implementation is nontrivial.

In conclusion, we have proposed a renormalization gro
treatment of problems in fluid dynamics. The renormaliz
tion group implies that perfect discretizations of the co
tinuum Navier-Stokes equations exist. The perfectly d
cretized equations of motion have been constructed explic
for slow static flows and have been optimized for locali
This is essential in practical applications. The renormali
tion group offers a systematic way of treating small sc
effects in fluid dynamics. Realizing this program for the fu
i.

.

e
.
he

p
-
-
-
ly
.
-

e

Navier-Stokes problem requires a lot of work. Still, the ste
that we have taken have led to promising results.
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